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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTX NO. 1557

COMPRESSIVE BUCKLIlW3OF SIMPLY SUPPORTED PI#I!ES

WITE TRANSVERSE STHKENERS

By Bernard Budiansky and Paul Seide

SUMMARY

Charts are presented for the analysis of the sta%iI.ityunder
longitudinal compressIon of sipply su~rted
several equally epaced transverse stiffeners
and flexural rigidity.

INTRODUCTION

rectangular plates with
that have both torsional

.—

The problem of determining the compressive buckling load of
simply supported rectangular plates with identical equally spaced
transverse stiffeners having no torsional rigidity has been treated
by several writers. Timshenko (reference 1), using the Rayleigh-
Ritz ener~ method, obtained an approximate solution of this problem
for plates with one stiffener and with three stiffeners. Lundquist
(reference 2) reduced an infinite determinant obtained from the
energy method-and thereby derived en exact stability criterion in
series form for plates having any finite number of stiffeners. In
addition, Lundquist indicated a method involving graphical minimi-
zation for analyzing plates with infinitely many bays. In reference 3,
Ratzersdorfer used a difference-equation approach to ob+tin a stabili~y
criterion in closed form (equivalent to Lundquist’s series form) for
plates with any fln~te number of stiffeners. _.

In the preseni paper the effect of stiffener torsionel rigidity
is taken into account. An appendix contains an exact Rayleigh+itz
analysis of the compressive buckling of a simply supported plate
that has,in addition to identicel equally spaced intermediate
stiffeners, end stiffeners of half the torsional rigidity of the
intermediate stiffeners. (See fig. 1.) Stability criterions are
obtained in series form end are then reduced to closed form to
facilitate the subsequent derivation of limiting stability criterions
for infinitely long platas with identical equally spaced st~ffe~rst

The theoretical results that are considered to be of most
practical value are presentei by mans of charts giving nondimmsional
curves that may be used d!rectly to analyze the stability of

.
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transversely stiffened plates.
stability criterions for plates

The curves were
with infinitely
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computed from the
many bays but are

applicable, with small errors on the conservative side, to plates
with four or mme bays. The charts presented cover t~ pra;tical
range of stiffener spacings, between zero and one4alf the plate
width.

SYMBOLS

Plates:

X,y,z

w

b

E

h

P

D

L

N

ErIr

‘r%7 =—
bD

GJ

GJa=— bD

Nx

coordinate axes

displacement in

plate width

young’s modulus

plate thickness

Poissonts ratio

(fig. 1)

z-direction

for plate

for plate

plate flexural rigidity per unit width

(+)

distance between stiffeners

number of bays

aspect ratio of each bay
()

~
b

effective flexural rigidity of stiffener attached to
plate

stiffener torsional rigidity

critical compressive load per unit wid~h

*. -

.

*
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k

P

c

~

m,n,p,s

Sm

A,AS,B,BC

coluJDns :

P

L

EI

c

K

,()
Nxbz

buckling load coefficient —
T(%

total critical load (Nxb)

integer defining location of stiffener ( )~=cL

integer defining buckling nmde (1 S q S n -“1)

integers
.

Kronecker delta (1 if m = n; Oif m+n)

parameters defined in appendix

COIWRl buckling 10ti

length of each span

column flexural stiffness

reflectional spring constant, force per unit deflection

rotational spring constant, moment per radian rotation

RESULTS AND DISCUSSION

Plates with Infinitely Msny Bays

The theoretical stability criterions derived In the append%x for
infinitely long simply supported plates with identical equally spaced
transverse stiffeners relate three nondimensional parameters:

PL2Buckling load parameter . . . . . . . . . . . . . . . . . . . . ~

Stiffener flexural-rigidity psrsmeter . . . . . . . . .Q)3~*)

Stiffener torsionalalgldity psrsmeter . . . . . . . . . .z(;)~+)

Charts containing curves which show the relationship among three
parameters are given in figures 2, 3, and 4 for plates having bays of
aspect ratio L/% equal to 0.50, 0.35, and 0.20, respectively.
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As the aspect ratio of the bay is decreased to zero, the curves
of figures 2 to b converge to the ctives of figure 5, taken from
figure 5 of reference 4, for the buckling of an infinitely long
column on equally spaced reflectional and rotational springs. The
physical explanation of this convergence is that, as the stiffener
spacing becomes smaller and smaller, the effect of transverse bending
of the plate becomes less and less, until, in the limit, the plate
buckles (except for ths Poisson effect) like a column on ela8tic
supports. The nondimensional parameters for the plate that are used
were chosen so that, as L/b approaches zero, they become equivalent
to the column parameters of reference 4, shown in figure 5. The
curves of figure 4, for ~ = 2, and,the column curves (~ = O) of
figure 5 are very close together, so that the column curves may be
used to obtain good conservative approximations to the buckling
loads of plates with bay aspect ratios less than 0.20. Figure 6,
in which two of the curves of figure 4 are compared with the
corresponding curves of figure 5, shows the error involved in the
approximation to be small.

The data used in plotting the curves of figures 2 to 5 are
presented in tables I to IV.

Plates with a Finite Number of Bays

In the appendix, exact stability criterions are given for the
compressive buckling of a simply supported plate that has,in addition
to any number of identical equally spaced intermediate stiffeners,
end stiffeners of half the torsional rigidity of the intermediate
stiffeners. The special end conditions were introduced to facilitate
an exact solution by the Raylelgh4itz energy method.

Although the stability criterions could be used to construct
charts similar to those presented for plates with infinitely many
bays, such charts are not given because

(a) The charts for plates with infinitely many bays are
suitable for the analysis of plates with four or nrn’ebays

(b) Charts for plates with one or two intermediate stiffeners
would be of limited interest because of the special end conditions
assumed in the analysls.

Plates with Four or More Bays

In figure 7, two of the curves of figure 4, for the plate with
infinitely many bays, are compared with the corresponding c~ves
for the plate with four bays, computed from the stability criterions

e
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for finite plates. This comparison indicates that a close approxi–.
nation, on the conservative side, to the buckling load of plates with
four or mre bays may be obtained by mans of the curves for infinitely
many bays. Ths error involved, shovn by figure 7 to be less than
10 percent for the fo~ay case when $ = 0.20, decreases as the
number of bs@ Increases.

Langley Memrial Aemmautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., November 19, 1947

#
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APPENDIX .

DERIVATION OF

Plate with

The mthod of solvlng for

TEE STABILITY CRITERIONS

Find.te Number of Bsys

the stability criterions of simPIY
supported plates having e~ually spaced tran~verse stiffeners iS -
analagous to the method used in reference 4 to analyze the buckling
of columms on equally spaced reflectional and rotational springs. A
Fourier series is chosen to represent the deflection surface of the
buckled plate, and the potential energg expression is minimized with
respect to each of the unknown Fourier coefficients. The resulting
equations are then separated into independent sets, each set con-
taining the coefficients corresponding to a particular buckling mode.
A general expression for the stability criterion for each buckling
mode is derived.

-“
cessions.- The deflection surface of the buckled plate

(see fig. 1 may be representedby the Fourier series

When the initially straight stiffened plate buckles, the energy

,

(1)

stared in it is

)
2

+L
b2

,

The bending energy stored in

●

N-1
Ub = E

C=l

the stiffeners is

ErIr

so

b ~~2

-Z--O dy
p X=CL

~4XrIr ‘–1 m
2

=—
E (z

)

nfican 8in—
4 b3 c=l n.1 N

(2)

.

.

*

(3)
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The twisting ener~

7

of the stiffeners is

.

The work done by the longitudinal load In shortening the plate is

Mi.nimization.-
ener~ expression

with respect to the

F=

The buckling load may be found by minimizing the
.

a’s,
(5) into equation (6)

F =V+ub+ut-w (6)

Substitution of equations (2), (3), (4),
gives
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where

-.
~b2.,

“k=—
.;

.L” ‘

NACA TN No. 1557

—.

. .

.

.

‘r+ry.————
m

and
GJ

‘=65

Then, minimizing F with resyct to the ats yields

+ -(D&- co:”%Cos*-”(1+5.:+?5J‘n=1s2s3s*oo)‘8) “
m=l C=o

8

Equations (8) are similar to the correspmding
h and may be separated into N + 1 inde-

Stabllity criterions.-
equations (B8) of reference
pendent sets, each set corresponding to buckling in a particular rode.
The application of the
atabllity criterions

{[

m

1 x 1+—-
R

337 *4 2*3

Mthod of solution of reference 4 yields the

.
1 1}({1 1)~F’+J+F(E’+’’-i12—-

R 13a R R
2(s+1)-; S=o 2s+ 2(s+1)-;

(!3)

.

k
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where.

R
2s+: =

M2($ +$2 - kis +$2 + q’

[
~’
1 {L

2

H

#2+$2
‘2(8+1)-: =

l@’2(s+l)-~ - 2(s + 1) -

“-9

=0 (lo)

plate with nodes at the stiffenerscorresponding to buckling of the
end with a symmetrical buckling configuration in each bay, end

iii+ ~ -+P=2,4,6, . . .

=0 (n)

plate with nodes at the stiffenerscorresponding to buckling of the
and with an antis~trical buckling configuration in each bay.
Equations (9), (10 ), snd (11) reduce to those obtained in reference
if the stiffener torsional rigidity is zero.

The buckling criterion of equation (9), for a particular value
correspends to a buckling configuration having a Fourier expression
contains only the coefficients

all’ a2N+q’%?+q’ ● “ “

2

of q,
that

a2N<’ a4N-q’ “ ● “



The criterion till be satisfied by many different buckllng loads for given values of ~, y, aud u, P

each of which till correspond to a buckling configuration in which one of the Fourier coefficients
o

given prevlousl.y is dominant. For practical stiffener spacings, W lowestbuckktng load gemreil.ly
cmrespxxis to a tie with ~ domhmnt, and hence with q buckles in the longitudinal dlrecticm.

It is possible, lmever, that ‘for large atif fener spacings (p > @), for which the natural half
wavw length of the unetiffened buckled plate la less than the stiffener spacing, the lowest buckling
load corresponds to a mde In vhich a coefficient otimr then ~ is dominant.

Closed -form aQ&@M.- The infinlta emies In equatlona(9), (10), @ (11) my be evaluated,as
in reference4, by expressingthe general.term of each series as tJM mm of partial fractions and
recombining these fractions to obtain other series readily evaluated by equations 6.49>1 end 6.495-2
of reference 5. The olosed-form stability criterions obtained in this manner are

and

, *

., ..- ..’

(12)

G
U
-4

, ,
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where

.

●

(14) ‘

Equations (12), (13), end”(14) constitute the complete set of
closed-form stability criterions. The correct criterion for eny
given values of y and u is that which yields the lowest buckling-
loed coefficient. The equations reduce to those obtained by
Ratzersdorfer (reference 3) if the stiffener torsional rigidity is
equal to zero.

Plate with Infinitely h%ny Bays

The stability equation for a plate with infinitely

.—

mmy bays is
obtained by e an~ti equation (13) and minimizing the result with

3respect to q ; this procedure gives

.



Substitution of equation (15) tito equation (12) yields

n2y2(Bsin A* - A Sin Bt)2 + ~~=( cos As - cos BC)(B ein At

[ (-2&N 3(cosA$ -COL3BC)2 + !2AB(l-coa AS CMB*) - A2+

+ 8fi~=-( CCM A, - cos B*.)(A sin AS + B Bin B~)

+A ein BS)

1B2) sin At sin Bt

+ s%~A sin At -B sin B9)2)+ 16(k-k)(ooa A* - cOE B~)2 = O

which is the stability criterim for a phte uith infinitely many bays when O < # < 1.

When qfi is equal to 1, equation (E?) yields tvo indepemient criterions:

(’

4qn s 1
a=-—

x
Atm AT

‘)
-Btan BT

(J-6)

(17)

correspmiing to buckling with no &ding of thg ribs and with a symmetrical buckling configuration

in each bay, srmi

Corrospmlhg to alltis~tiical buckling with no rib twisting.

, . , .

(M)

,
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. When q/N is equal to O, equation (12) yields two other
independent criterions:

a.- ( 1
% t

A cot ‘T
‘)

- B cot ‘T

corresponding
ribs, end

Correqyxlding

to antisymetrical buckling with no bending of the

to symmetrical buckling with no rib ttisting.

“13

(19)

(20)

The curves of figures 2 to k were plottad by means of
equations (I-6), (17), and (M) in a menner similar to that outlined
in appendix C of reference 4. Equations (19) and (20) were not.
used since, for the values of $ considered in this paper, they field
higher buckling loads than equations (17) and ( 18). . ... — ——

.

.

.
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w%)
PL2
iir

h .836
6 .s3.2
8.234
9.685

10.597
1.2.020
3.2.W6
13.601
v .657
16.025
2U .310
25.231
30.406
w .ml
36.382
2.45;

.

TA31E I.”

DATA ~ FIHIRE 2

o

0
4.=

10.6
17.32
25 .W
33.#
35 J.

2

0
IL.11
8.03

1.z.3b
12 .g2
12.g6
13.55
22.96
43.23

3

) (=+bD

5

0
3.&
5.94
7.24
7.25

J%
21 .g2
3tb.27
55.10

‘IMBUE II

DATA mIl Pmmx3

p = 0.33

10

0
2.k8
3.73
3.*
4.L8
11.11
18.33
30.17
39.37
52.84
72.55

20

0
1.33
1.34
1.82
9.80

17 .gg
g .17
35’.37

U
93.21
95.57

Y

o
.01
.71

9.&
17 .gg
y) .17
39.37
y .84

g :E
93.75

~ .01
w .26

.

a

o
.71

1%:
9.17
39.37
y.&
I%.&
93.21
93.75
~ .01
=5 .09
-.58
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TABLZ III

DATA FoRFlGu2x4

@ .O.xij

..

I I

0
1.48
L.IA

I 1 I

5 10 20

“o
1.68 0
4.26 1.68 0
7.s7 k.22 1.79

10.62 6.72 3.98
15.31 11.14 8.46
24.04 18.77 17.77
24.38 19.59 18.13
58.41 39.60 3g .y+

74.75 64.90
91.89
97.36

TABIE IV

DATA FOR lUGUEOIY

w

o
1.83 -

1;::
:.$

6h:90
91.&
gb .03

124.97
la .70

m

—.—

0

1;::
1.8.13
~.vb
61J.go
91.89
gb .03
124.97
125.26
157. “78

.

.

~3

Fr

.

~2 o 2 5 10 29 x “

7iT-

0 0
1.708 .73 0
3 .b67 3.olb .68 0
5.218 6,97 .87 0
6.906 12.58 2:$ .88 0

20.36 11.28 ?% 3.33. 1.30 0
39.48 16.50 10.50 6.71

Zi

3.94 1.88 0
IJ.:3 23. j9 15.25 10 .7j’ 7.73 7 M 7.41

45.35. 2b.2b 19.48 17.86 17.s 17.%
13.h91 b7.43 2h.33 ~

17.749
20.C6 17 .gg 17 .gg 17 .gg

%.-n 39.57 39.26 B .26 B .26
22.667
27.952

74.55 64.80

28. 16k
92.71 $:; $%
97J13 93.86 93.86

33 .W7 1-.87 la .87

, 33.931 126.15 3.2?6.o~
39 .L78 157.91

u

A ““
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Y
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7

E
E

E :.x

‘=@=J7” _

z

Torsional rigidity: ~

,*.,*&, x ‘---
FlexUral rigidity:

Figure 1: Plate with transverse stiffeners.



18 NACA TN NO. 1557

50 I , 1 I I t I I I 1

I

1
45

4

35

—

@

.

15 -------- .=
.

30

t

I

T5
IrKn-lybays. /3=Q5cl

co
40I35 ‘

30

25-

20 - /-”-”””” ..

15- .--. , ,..

10

5

.—

-.

-.

,“

*

o~ I i I I 1 t 1 I L ~. .. . .J
20 ‘“ 4Q 60 “120 140 16”rm

‘%xwm ●



,

.

“

NACA TN No. 1557 . 19

45 I 1 1 I 1 [ I 1

40 -

35-

30- ~o

P#E
al -

15 -

10

5 ~“

01 # I I I 1 , I , I I I , I [

o 20 40 60 120 MO

‘“fl+i% ‘0

60 -. w

Fq.re47 BJckGq roves & @ate vii Lnfritsiy nxq bays. L7=020.

.- . . .

40 -

35-

30 -

~k: 25 -
&
w

GdxlT@ -

1!

.
-..

5
i

.

15 - —

10

-“’!

“-~ ‘“ “’-----

5

r
00

I 1 1 I I I 1 I [

m 40 60 100 120 [40 m
Rate?r~&&j) Cckrrrl:g

180

F@’e 5.- Apxinate txckkq ~ fcr @le wk mfddy mcmy bays. B<m.

(B.ddirq cvves h caknrI with rhmkiy~GY w.).



20 NACA TN No. 1557

451 I I I I 1 1 1 I I

*.CO
40 -

J&m

35-

30 -

me
~ 25- Plate

-.
tialmn:

* 20-
-,

.

0: ! I 1 , I ! ! 1 ! I I

20 40 I20 MO 160 160
* P!de :&y&) JR:#

45 , I i I , 1 , 1 ) i. 1

i-i+~’o
40 -

35-

!+.4

30-

25 - .—
..-

20- .

15-

5-

01 I I , I I I I ! I 1

0 20 40 60 80 103 120 MO 160

T“&y(g&

.--.

—

.—

.: -

●


